"Pervasive NO_x" in the Troposphere Robert Chatfield, NASA (Ames Res. Ctr., chatfield@clio.arc.nasa.gov) GMI Science Team NO_y / NO_x relationships in the GMI simulations: Where does true remote-atmosphere NO_x come from and what determines the lowest simulated levels? Import: Tropospheric O_3 production (and OH levels) are most sensitive to changes in NOx at low (1-50 ppt) levels; PDF of NO_x is important - (1) Observed vs. modeled HNO_3/NO_x and PAN/NO_x observations about tropospheric "age of air" - (2) NO_x from aircraft: one day's flights: ignoring diel variation equivalent to huge horizontal misplacement ## Obs Regions B Alaska*ABLE-3A C Calif*CITE-2 D Calif-Coast*CITE-1B E Canary-Islands*POLINAT-2 F Central-US*SUCCESS G China-Coast+PEM-West-A H Ching-Coast*PEM-West-B I China-Coast+TRACE-P J Christmas-Island*PEM-Tropics-A K Christmas—Island*PEM—Tropics—B L E—Atlantic*POLINAT—2 M E-Brazil*ABLE-2A N E-Brazil*ABLE-2B O E-Brazil+TRACE-A P E-Brazil-Coast+TRACE-A Q EAtlantic+SONEX R Easter-Island+PEM-Tropics-A S Easter—Island*PEM—Tropics—B T Europe*POLINAT—2 U Fiji*PEM—Tropics—A V Fiji*PEM—Tropics—B W Howoii+CITE-1B X Hawaii*PEM—Tropics—A Y Hawaii*PEM—Tropics—B Z Hawaii+PEM-West-A a Ireland*POLINAT-2 b Ireland*SONEX c Japan*PEM-West-A d Japan*PEM-West-B e Japan*TRACE-P f Labrador+ABLE-3B g Natal+CITE-3 h New-Mexico+ELCHEM i Newfoundland+SONEX j Ontario+ABLE-3B k Pacific*CITE-2 I Philippine-Sea*PEM-West-A m Philippine-Sea*PEM-West-B n S-Africa*TRACE-A o S-Atlantic*TRACE-A p Tahiti*PEM-Tropics-A q Tahiti*PEM-Tropics-B r Tasmania*ACE-1 s US-E-Coast*ABLE-3B t W-Africa-Coast*TRACE-A u W-Brazil*ABLE-2A v W-Tropical-Pacific*PEM-West-A w Wallops*CITE-3 $[HNO_3]_{obs}/[NO_x]_{obs}$ [HNO₃]_{mod}/[NO_x]_{mod} #### Note: Models tends to have more HNO_3 per unit NO_x than Observations True for all meteorol, datasets Obs tend to have lower "age" (or, less NO_x per unit HNO_3) ### Note: · MACCM3 seems to have more spread in age than DAO (GEOS-STRAT) #### PAN also shows similar ... as in GEOS-Strat to GEOS-3 (says Jacob) # Overdisperse Sources of NO_x Strong diel pattern of aircraft emissions over the US suggests that repeated "pulses" of NOx move away from N. America. - (1) Too much modeled NOx or too little NOy in the HNO₃/NO_x and PAN/NO_x ratios tropospheric "age of air" is better in DAO compared to MACCM3, GISS - (2) NO_x from aircraft: one day's flights: 7:1 diel variation over U.S. We would not tolerate inaccuracies of this sort f